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1. A basic problem in mathematical finance is to replicate a random claim with
Fr-measurable payoff Hr with a portfolio involving only the underlying asset Y
and cash. When Y follows a diffusion process of the form

it is known that under minimal assumptions, a random payoff depending only on
the terminal value of the asset Hy = H(Yr) can be replicated with the so-called
delta hedging strategy. However, to implement such a strategy, the hedging port-
folio must be readjusted continuously, which is of course physically impossible and
anyway irrelevant because of the presence of microstructure effects and transaction
costs. For this reason, the optimal strategy is always replaced with a piecewise con-
stant one, leading to a discretization error. The relevant question is then to find
the optimal discretization dates. Of course, it is intuitively clear that readjusting
the portfolio at regular deterministic intervals is not optimal. However, the optimal
strategy for fixed n is very difficult to compute.

Fukasawa [1] simplifies this problem by assuming that the hedging portfolio is
readjusted at high frequency. The performance of different discretization strate-
gies can then be compared based on their asymptotic behavior as the number of
readjustment dates n tends to infinity, rather than the performance for fixed n.
Consider a discretization rule : a sequence of discretization strategies

0=T5 <TV" < - <T/<...,

with sup; [T, — T}'| — 0 as n — oo and let Ny := max{j > 0;T]" < T} be the
total number of readjustment dates on the interval [0, 7] for given n. To compare
different discretization rules in terms of their asymptotic behavior, Fukasawa [1]
uses the criterion

lim E[N7]E[(€")7], (2)
n—oo
where (£™) is the quadratic variation of the semimartingale (£;'):>0. He finds that
when the underlying asset is a continuous semimartingale, the functional (2) admits
a nonzero lower bound over all discretization rules, and exhibits a specific explicit
rule based on hitting times which attains this lower bound and is therefore called
asymptotically efficient.
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While the above approach is quite natural and provides very explicit results, it
fails to take into account important factors of market reality. First, the asymptotic
functional (2) is somewhat ad hoc, and does not reflect any specific model for the
transaction costs. Second, the continuity assumption, especially at relatively high
frequencies, is not realistic.

The objective of our work is therefore two-fold. First, we develop a framework
for characterizing the asymptotic efficiency of discretization strategies which takes
into account the transaction costs. Second, we remove the continuity assumption
in order to understand the effect of the activity of small jumps (often quantified
by the Blumenthal-Getoor index) on the optimal discretization strategies.

2. Our goal is to study and compare different discretization rules for the stochastic

integral
T
| xeav,
0

where X and Y are semimartingales with jumps. More precisely, our principal
assumptions on the processes X and Y are

e The process Y is a F-local martingale, whose predictable quadratic variation

satisfies (Y); = f(f Asds, where the process (A;) is cadlag and locally bounded.

e The process X is a pure jump semimartingale defined via the stochastic
representation

¢ t t
Xt:XO—|—/ bsds—l—/ / Z(M—/L)(dSXdZ)—F/ / zM(ds x dz),
0 0 J|z|<1 0 J|z|>1
(3)

where M is the jump measure of X and p is its predictable compensator,
which satisfies additionally p(dt x dz) = dt x M\ K¢(z) v(dz), where \ is a
positive cadlag process, K is a random function which is in some sense “close
to 1”7 when z is close to 0 and v is a Lévy measure satisfying

zv((x,00)) = ¢+ and z%((—oc0,—x)) = c- when z —0. (Hy)

for some a € (1,2) and constants c; > 0 and ¢ > 0 with ¢4 + c— > 0.

A discretization rule is a family of stopping times (77)$2) parameterized by a
nonnegative integer ¢ and a positive real ¢, such that for every ¢ > 0, 0 = T <
TP < T5 < ..., and sup{i : Tf < T} < oo. For a fixed discretization rule and a
fixed €, we denote n(t) = sup{17 : Tf <t} and Ny =sup{i: I7 <T}.

The performance of a discretization rule is measured by the error functional
E(e) : (0,00) — [0,00) and the cost functional C(¢) : (0, 00) — [0,00). We consider
the error functional given by the L? error

(/ X - n@)dn)Q] (1)

Ee)=F
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and a family of cost functionals of the form

CPley=Ee| > |Xre—Xr I°|. (5)
i>1:TE<T

The case § = 0 correspond to a fixed cost for each discretization point, and the
case 8 = 1 corresponds to proportional costs.

In our framework, a discretization strategy will be said to be asymptotically
optimal for a given cost functional if no strategy has (asymptotically, for large
costs) a lower discretization error and a smaller cost.

Motivated by the form of the explicit asymptotically optimal strategy found by
Fukasawa [1] and the readjustment rules used by market practitioners, we consider
discretizations based on the hitting times of the process X. Such a discretization
rule is defined by a pair of positive F-adapted cadlag processes (at):>0 and (a;)e>0-
The discretization dates are then given by

/'Z—;a—l = lnf{t > 1}6 . Xt ¢ (XTZE — 5@/1’;_&, XTiE + EETZE)}

3. We characterize explicitly the asymptotic behavior of the errors and costs asso-
ciated to our random discretization rules, by showing that, under suitable assump-
tions,

lim e 28()=F [ /0 ! At%dt} (6)
;ig%sa—ﬂcﬁ(e) = F UOT At%dtl, (7)

where, for a,a € (0, 0),

f(@,ﬁ)—El/OT

with 7% = inf{t > 0 : X ¢ (—a,a)}, where X* is a strictly a-stable process with
Lévy density

*

(Xt*)th] , g(a,a) = E[r*] and u’(a,a) = E[|X ] < .

* _ &+ Lys>o+c-lz<o
vi(z) = [T+

The above result allows to prove that we may look for optimal barriers a and
@ as minimizers of

. f(Qtvat) c uﬂ(gbat)
mm{“‘fg@t,at) N ) } ®)

The parameter ¢ may be chosen by the trader depending on the maximum accept-
able cost: the bigger ¢, the smaller will be the cost of the strategy and, consequently
the bigger its error. The functions f, g and u appearing above must in general be
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computed numerically, however, in the case when the limiting process X* is a sym-
metric stable process, which corresponds for example to the CGMY model very
popular in practice, the results are completely explicit, as will be shown in the
next paragraph.

4. Assume that Y is an exponential of a Lévy process: Y; = e?* where Z is a
Lévy process without diffusion part, and whose Lévy measure has a density v(x)
satisfying v(z) ~ Mﬁ’ z — 0. Then A; = XY? with ¥ = [(e* — 1)?v(z)dz. The
quadratic hedging strategy in this case has been given by several authors and is
known to have a Markov structure: Xy = ¢(¢,Y;) for a deterministic function ¢. In
this case we may compute

(00 Y)\
A= (Ya—y>

and therefore

2Xa—43 a—2
ap = c (8¢(t, Yt)) 2+a=p Yta—,3+2.
oY
When 8 =0 and o — 2, we find that the optimal size of the rebalancing interval is
proportional to the square root of % (the gamma), which is consistent with the
results of Fukasawa [1], quoted above. In the general case, we obtain an explicit
representation for the optimal discretization dates, which includes two “tuning”
parameters: the index 8 which determines the effect of transaction costs (fixed,
proportional, etc.) and the Blumenthal-Getoor index « measuring the activity of

small jumps.

References

[1] M. FUKASAWA, Asymptotically efficient discrete hedging, in Stochastic Analysis with
Financial Applications, Progress in Probability, vol. 65, Springer, 2011.



